livechat
期間限定特別サービス、15%割引キャンペーン実施中、02:23:52において終了。お得な割引コード:TOPJP2025
HACKER SAFEにより証明されたサイトは、99.9%以上のハッカー犯罪を防ぎます。
カート(0

Oracle 1Z0-1127-25 問題集

1Z0-1127-25

試験コード:1Z0-1127-25

試験名称:Oracle Cloud Infrastructure 2025 Generative AI Professional

最近更新時間:2025-09-17

問題と解答:全90問

1Z0-1127-25 無料でデモをダウンロード:

PDF版 Demo ソフト版 Demo オンライン版 Demo

追加した商品:"PDF版"
価格: ¥6599 

無料問題集1Z0-1127-25 資格取得

質問 1:
What is the function of the Generator in a text generation system?
A. To collect user queries and convert them into database search terms
B. To store the generated responses for future use
C. To generate human-like text using the information retrieved and ranked, along with the user's original query
D. To rank the information based on its relevance to the user's query
正解:C
解説: (Topexam メンバーにのみ表示されます)

質問 2:
What happens if a period (.) is used as a stop sequence in text generation?
A. The model stops generating text after it reaches the end of the first sentence, even if the token limit is much higher.
B. The model stops generating text after it reaches the end of the current paragraph.
C. The model generates additional sentences to complete the paragraph.
D. The model ignores periods and continues generating text until it reaches the token limit.
正解:A
解説: (Topexam メンバーにのみ表示されます)

質問 3:
Which statement best describes the role of encoder and decoder models in natural language processing?
A. Encoder models convert a sequence of words into a vector representation, and decoder models take this vector representation to generate a sequence of words.
B. Encoder models take a sequence of words and predict the next word in the sequence, whereas decoder models convert a sequence of words into a numerical representation.
C. Encoder models are used only for numerical calculations, whereas decoder models are used to interpret the calculated numerical values back into text.
D. Encoder models and decoder models both convert sequences of words into vector representations without generating new text.
正解:A
解説: (Topexam メンバーにのみ表示されます)

質問 4:
What is the purpose of Retrieval Augmented Generation (RAG) in text generation?
A. To retrieve text from an external source and present it without any modifications
B. To store text in an external database without using it for generation
C. To generate text based only on the model's internal knowledge without external data
D. To generate text using extra information obtained from an external data source
正解:D
解説: (Topexam メンバーにのみ表示されます)

質問 5:
What is the main advantage of using few-shot model prompting to customize a Large Language Model (LLM)?
A. It significantly reduces the latency for each model request.
B. It allows the LLM to access a larger dataset.
C. It provides examples in the prompt to guide the LLM to better performance with no training cost.
D. It eliminates the need for any training or computational resources.
正解:C
解説: (Topexam メンバーにのみ表示されます)

質問 6:
What does "k-shot prompting" refer to when using Large Language Models for task-specific applications?
A. Explicitly providing k examples of the intended task in the prompt to guide the model's output
B. Providing the exact k words in the prompt to guide the model's response
C. Limiting the model to only k possible outcomes or answers for a given task
D. The process of training the model on k different tasks simultaneously to improve its versatility
正解:A
解説: (Topexam メンバーにのみ表示されます)

質問 7:
How can the concept of "Groundedness" differ from "Answer Relevance" in the context of Retrieval Augmented Generation (RAG)?
A. Groundedness measures relevance to the user query, whereas Answer Relevance evaluates data integrity.
B. Groundedness pertains to factual correctness, whereas Answer Relevance concerns query relevance.
C. Groundedness refers to contextual alignment, whereas Answer Relevance deals with syntactic accuracy.
D. Groundedness focuses on data integrity, whereas Answer Relevance emphasizes lexical diversity.
正解:B
解説: (Topexam メンバーにのみ表示されます)

質問 8:
What is the purpose of frequency penalties in language model outputs?
A. To randomly penalize some tokens to increase the diversity of the text
B. To ensure that tokens that appear frequently are used more often
C. To reward the tokens that have never appeared in the text
D. To penalize tokens that have already appeared, based on the number of times they have been used
正解:D
解説: (Topexam メンバーにのみ表示されます)

質問 9:
What does "Loss" measure in the evaluation of OCI Generative AI fine-tuned models?
A. The percentage of incorrect predictions made by the model compared with the total number of predictions in the evaluation
B. The level of incorrectness in the model's predictions, with lower values indicating better performance
C. The difference between the accuracy of the model at the beginning of training and the accuracy of the deployed model
D. The improvement in accuracy achieved by the model during training on the user-uploaded dataset
正解:B
解説: (Topexam メンバーにのみ表示されます)

1Z0-1127-25 関連試験
1Z0-1195-25 - Oracle Data Platform 2025 Foundations Associate
1z0-1104-21 - Oracle Cloud Infrastructure Security 2021 Associate
1Z0-1089-21 - Oracle Cloud Infrastructure 2021 HPC and Big Data Solutions Associate
1Z0-1122-25 - Oracle Cloud Infrastructure 2025 AI Foundations Associate
1Z0-1151-25 - Oracle Cloud Infrastructure 2025 Multicloud Architect Professional
連絡方法  
 support@topexam.jp サポート

試用版をダウンロード

人気のベンダー
Apple
Avaya
CIW
FileMaker
Lotus
Lpi
OMG
SNIA
Symantec
XML Master
Zend-Technologies
The Open Group
H3C
3COM
ACI
すべてのベンダー
TopExam問題集を選ぶ理由は何でしょうか?
 品質保証TopExamは我々の専門家たちの努力によって、過去の試験のデータが分析されて、数年以来の研究を通して開発されて、多年の研究への整理で、的中率が高くて99%の通過率を保証することができます。
 一年間の無料アップデートTopExamは弊社の商品をご購入になったお客様に一年間の無料更新サービスを提供することができ、行き届いたアフターサービスを提供します。弊社は毎日更新の情況を検査していて、もし商品が更新されたら、お客様に最新版をお送りいたします。お客様はその一年でずっと最新版を持っているのを保証します。
 全額返金弊社の商品に自信を持っているから、失敗したら全額で返金することを保証します。弊社の商品でお客様は試験に合格できると信じていますとはいえ、不幸で試験に失敗する場合には、弊社はお客様の支払ったお金を全額で返金するのを承諾します。(全額返金)
 ご購入の前の試用TopExamは無料なサンプルを提供します。弊社の商品に疑問を持っているなら、無料サンプルを体験することができます。このサンプルの利用を通して、お客様は弊社の商品に自信を持って、安心で試験を準備することができます。
a