HACKER SAFEにより証明されたサイトは、99.9%以上のハッカー犯罪を防ぎます。
カート(0

NVIDIA NCA-GENM 問題集

NCA-GENM

試験コード:NCA-GENM

試験名称:NVIDIA Generative AI Multimodal

最近更新時間:2025-06-18

問題と解答:全403問

NCA-GENM 無料でデモをダウンロード:

PDF版 Demo ソフト版 Demo オンライン版 Demo

追加した商品:"PDF版"
価格: ¥6599 

無料問題集NCA-GENM 資格取得

質問 1:
You are tasked with fine-tuning a pre-trained multimodal model for a new task involving image and text inputs. The pre-trained model was trained on a large dataset of image-caption pairs. Which of the following strategies would be MOST effective for transfer learning in this scenario, considering computational efficiency and performance?
A. Fine-tune all layers of the pre-trained model with a very small learning rate.
B. Fine-tune a subset of layers, specifically those responsible for feature extraction from both image and text modalities, while keeping the lower layers frozen.
C. Fine-tune only the classification head (output layer) while freezing all other layers of the pre-trained model.
D. Train a new model from scratch on the new task's dataset.
E. Use knowledge distillation to transfer knowledge from the pre-trained model to a smaller, more efficient model.
正解:B
解説: (Topexam メンバーにのみ表示されます)

質問 2:
You're building a system that generates images from text descriptions, incorporating spatial relationships. For instance, the text 'A red ball is to the left of a blue cube' should result in an image where the red ball is actually positioned to the left of the blue cube. Which of the following approaches would be MOST suitable for encoding and utilizing spatial information in this text-to-image generation process?
A. Augmenting the text encoder with explicit spatial relation embeddings that represent the relative positions between objects. Use these embeddings to modulate the image generation process (e.g., through attention mechanisms).
B. Applying a pre-trained object detector to the generated image and penalizing the model if the spatial relationships are incorrect
C. Relying solely on the image decoder to learn spatial relationships implicitly from the text description during training.
D. Using a bag-of-words representation for the text, ignoring word order and spatial relationships.
E. Using a standard Transformer architecture for text encoding without any specific spatial awareness mechanisms
正解:A
解説: (Topexam メンバーにのみ表示されます)

質問 3:
You're developing a system to generate realistic 3D models from text descriptions. You're using a diffusion model-based approach and find that the generated models often lack fine details and exhibit artifacts. Which of the following techniques would likely lead to the MOST significant improvement in the quality of the generated 3D models?
A. Implement classifier-free guidance with a higher guidance scale.
B. Increase the number of diffusion steps during the reverse diffusion process.
C. Train the diffusion model on a larger dataset of text-3D model pairs.
D. Use a larger IJ-Net architecture for the denoising process.
E. All of the above
正解:E
解説: (Topexam メンバーにのみ表示されます)

質問 4:
You are evaluating a multimodal model that generates descriptions for video clips. You have human ratings for the relevance, fluency, and coherence of the generated descriptions. Which statistical test is MOST appropriate for determining if there is a statistically significant difference in the median ratings for each of these criteria (relevance, fluency, coherence) between two different versions of your model?
A. Kruskal-Wallis test
B. ANOVA
C. Friedman Test
D. T-test
E. Mann-Whitney U test
正解:E
解説: (Topexam メンバーにのみ表示されます)

質問 5:
You are building a system that uses audio and video to detect emotional states of a user. What are the challenges to this system?
A. Subjectivity in emotional expression across cultures and individuals.
B. Differences in lighting conditions influencing facial expression recognition.
C. Variations in background noise affecting audio quality.
D. Synchronization issues between audio and video streams.
E. All of the above.
正解:E
解説: (Topexam メンバーにのみ表示されます)

質問 6:
You are building a multimodal generative A1 model that creates realistic indoor scenes by combining textual descriptions, floor plans (geospatial data), and object libraries. The goal is to generate high-quality 3D models of the scenes. However, the model often produces scenes with physically implausible object arrangements (e.g., objects floating in the air, overlapping furniture). How can you MOST effectively integrate physical constraints into the generation process to ensure more realistic scene compositions?
A. Use a physics engine (e.g., NVIDIA PhysX) as a post-processing step to simulate the generated scene and correct any physically implausible object placements.
B. Increase the size of the training dataset with more examples of realistic indoor scenes.
C. Implement a rule-based system that enforces basic physical constraints (e.g., objects must be supported by a surface, no object interpenetration) during the generation process.
D. Train a separate discriminator network that evaluates the physical plausibility of generated scenes and penalizes implausible configurations during training.
E. Force the model to generate only scenes that exist within the training set.
正解:A,C,D
解説: (Topexam メンバーにのみ表示されます)

質問 7:
You are tasked with optimizing a multimodal model that combines audio and text data for speech recognition. The model currently struggles with noisy audio environments. Which data augmentation technique would be MOST effective in improving the model's robustness to noise?
A. Translating the text into different languages and back.
B. Randomly masking parts of the text input.
C. Adding Gaussian noise to the audio data.
D. Normalizing the text data to lowercase.
E. Rotating the images used for visual context.
正解:C
解説: (Topexam メンバーにのみ表示されます)

一年間の無料更新サービスを提供します

君が弊社のNVIDIA NCA-GENMをご購入になってから、我々の承諾する一年間の更新サービスが無料で得られています。弊社の専門家たちは毎日更新状態を検査していますから、この一年間、更新されたら、弊社は更新されたNVIDIA NCA-GENMをお客様のメールアドレスにお送りいたします。だから、お客様はいつもタイムリーに更新の通知を受けることができます。我々は購入した一年間でお客様がずっと最新版のNVIDIA NCA-GENMを持っていることを保証します。

TopExamは君にNCA-GENMの問題集を提供して、あなたの試験への復習にヘルプを提供して、君に難しい専門知識を楽に勉強させます。TopExamは君の試験への合格を期待しています。

弊社は無料NVIDIA NCA-GENMサンプルを提供します

お客様は問題集を購入する時、問題集の質量を心配するかもしれませんが、我々はこのことを解決するために、お客様に無料NCA-GENMサンプルを提供いたします。そうすると、お客様は購入する前にサンプルをダウンロードしてやってみることができます。君はこのNCA-GENM問題集は自分に適するかどうか判断して購入を決めることができます。

NCA-GENM試験ツール:あなたの訓練に便利をもたらすために、あなたは自分のペースによって複数のパソコンで設置できます。

安全的な支払方式を利用しています

Credit Cardは今まで全世界の一番安全の支払方式です。少数の手続きの費用かかる必要がありますとはいえ、保障があります。お客様の利益を保障するために、弊社のNCA-GENM問題集は全部Credit Cardで支払われることができます。

領収書について:社名入りの領収書が必要な場合、メールで社名に記入していただき送信してください。弊社はPDF版の領収書を提供いたします。

弊社は失敗したら全額で返金することを承諾します

我々は弊社のNCA-GENM問題集に自信を持っていますから、試験に失敗したら返金する承諾をします。我々のNVIDIA NCA-GENMを利用して君は試験に合格できると信じています。もし試験に失敗したら、我々は君の支払ったお金を君に全額で返して、君の試験の失敗する経済損失を減少します。

弊社のNVIDIA NCA-GENMを利用すれば試験に合格できます

弊社のNVIDIA NCA-GENMは専門家たちが長年の経験を通して最新のシラバスに従って研究し出した勉強資料です。弊社はNCA-GENM問題集の質問と答えが間違いないのを保証いたします。

NCA-GENM無料ダウンロード

この問題集は過去のデータから分析して作成されて、カバー率が高くて、受験者としてのあなたを助けて時間とお金を節約して試験に合格する通過率を高めます。我々の問題集は的中率が高くて、100%の合格率を保証します。我々の高質量のNVIDIA NCA-GENMを利用すれば、君は一回で試験に合格できます。

NVIDIA Generative AI Multimodal 認定 NCA-GENM 試験問題:

1. You are using NeMo to fine-tune a large language model for a specific task. You notice that the model is overfitting to the training dat a. Which of the following techniques could you apply to mitigate overfitting in this scenario? (Select all that apply)

A) Add dropout layers to the model architecture.
B) Decrease the learning rate.
C) Increase the batch size.
D) Increase the size of the training dataset.
E) Implement weight decay (L2 regularization).


2. You are building a multimodal model that takes video and audio as input. You want to fuse the information extracted from both modalities. Which of the following fusion techniques allows for learning temporal dependencies between modalities?

A) Attention-based Fusion using Transformers, allowing the model to weigh the importance of different parts of each modality over time.
B) Early Fusion (concatenating features before feeding into a single network).
C) Simple Addition of feature vectors from video and audio streams.
D) Late Fusion (averaging the probabilities from separate networks).
E) Maximum pooling across feature vectors from video and audio streams.


3. When using prompt engineering with text-to-image models, which of the following techniques are most effective in improving the fidelity and relevance of generated images to the input text?

A) Using a combination of highly specific prompts and negative prompts.
B) Using vague and open-ended prompts to encourage creative variations.
C) Using highly specific and detailed prompts, including attributes, style, and composition.
D) Focusing solely on the main subject of the image, omitting any contextual details.
E) Using negative prompts to explicitly exclude undesirable elements from the generated image.


4. You are building a multimodal generative AI model to create personalized travel itineraries based on user preferences. The input data consists of text reviews of hotels, images of landmarks, audio clips of local music, and time-series data of weather patterns. Which of the following data curation techniques are MOST critical to ensure the quality and coherence of the final itinerary?

A) Sentiment analysis of text reviews to rank hotels based on positive feedback.
B) Image captioning of landmarks to provide textual descriptions for the itinerary.
C) Prioritizing the most recent reviews, regardless of their content.
D) All of the above.
E) Temporal alignment of weather data with travel dates to suggest suitable activities.


5. Which of the following techniques are MOST relevant to optimizing the energy efficiency of a large multimodal generative A1 model deployed on NVIDIA GPUs? (Select TWO)

A) Using mixed precision training (e.g., FP16) to reduce memory usage and computation.
B) Increasing the size of the hidden layers in the transformer architecture.
C) Knowledge distillation, transferring the knowledge to a smaller model.
D) Adding more data augmentation techniques to the training process.
E) Implementing model parallelism across multiple GPUs without optimizing communication overhead.


質問と回答:

質問 # 1
正解: A、B、D、E
質問 # 2
正解: A
質問 # 3
正解: A、C、E
質問 # 4
正解: D
質問 # 5
正解: A、C

NCA-GENM 関連試験
NCA-GENL - NVIDIA Generative AI LLMs
NCA-AIIO - NVIDIA-Certified Associate AI Infrastructure and Operations
連絡方法  
 [email protected] サポート

試用版をダウンロード

人気のベンダー
Apple
Avaya
CIW
FileMaker
Lotus
Lpi
OMG
SNIA
Symantec
XML Master
Zend-Technologies
The Open Group
H3C
3COM
ACI
すべてのベンダー
TopExam問題集を選ぶ理由は何でしょうか?
 品質保証TopExamは我々の専門家たちの努力によって、過去の試験のデータが分析されて、数年以来の研究を通して開発されて、多年の研究への整理で、的中率が高くて99%の通過率を保証することができます。
 一年間の無料アップデートTopExamは弊社の商品をご購入になったお客様に一年間の無料更新サービスを提供することができ、行き届いたアフターサービスを提供します。弊社は毎日更新の情況を検査していて、もし商品が更新されたら、お客様に最新版をお送りいたします。お客様はその一年でずっと最新版を持っているのを保証します。
 全額返金弊社の商品に自信を持っているから、失敗したら全額で返金することを保証します。弊社の商品でお客様は試験に合格できると信じていますとはいえ、不幸で試験に失敗する場合には、弊社はお客様の支払ったお金を全額で返金するのを承諾します。(全額返金)
 ご購入の前の試用TopExamは無料なサンプルを提供します。弊社の商品に疑問を持っているなら、無料サンプルを体験することができます。このサンプルの利用を通して、お客様は弊社の商品に自信を持って、安心で試験を準備することができます。