HACKER SAFEにより証明されたサイトは、99.9%以上のハッカー犯罪を防ぎます。
カート(0

NVIDIA NCA-GENM 問題集

NCA-GENM

試験コード:NCA-GENM

試験名称:NVIDIA Generative AI Multimodal

最近更新時間:2025-05-04

問題と解答:全403問

NCA-GENM 無料でデモをダウンロード:

PDF版 Demo ソフト版 Demo オンライン版 Demo

追加した商品:"PDF版"
価格: ¥6599 

無料問題集NCA-GENM 資格取得

質問 1:
You are tasked with building a multimodal generative AI model to create marketing content from product images and descriptions. The image encoder uses a pre-trained ResNet50 model, and the text encoder uses a pre-trained BERT model. After initial training, the generated content frequently misinterprets the image. Which of the following strategies is MOST effective in improving the model's ability to correctly interpret the image within the multimodal context?
A. Replace ResNet50 with a simpler image encoder like a shallow CNN to reduce computational complexity.
B. Freeze the weights of both the ResNet50 and BERT models to prevent overfitting.
C. Fine-tune the ResNet50 model with a dataset of images specifically related to the product domain, using a contrastive loss function that encourages representations of images and corresponding text to be close in the embedding space.
D. Decrease the batch size during training.
E. Increase the learning rate for the BERT model to prioritize text-based information.
正解:C
解説: (Topexam メンバーにのみ表示されます)

質問 2:
Which data augmentation techniques are MOST suitable for improving the robustness of a multimodal model that uses images and text?
A. Rescaling images and changing the font of the text.
B. Adding Gaussian noise to images and randomly deleting words in the text.
C. Changing the image resolution and increasing the text size.
D. Randomly cropping images and translating text to different languages.
E. Rotating images and back-translating text (translating to another language and back to the original).
正解:B,E
解説: (Topexam メンバーにのみ表示されます)

質問 3:
You are building a multimodal model to classify news articles using both text and images. The text data is processed using spaCy, and image data is processed using Keras. You've noticed that the model is heavily biased towards the text dat a. Which of the following techniques would be MOST effective in addressing this modality imbalance?
A. Reducing the dimensionality of the image feature vectors using Principal Component Analysis (PCA).
B. Normalizing the length of text sequences to a fixed size before feeding into the model.
C. Using data augmentation techniques on the image dataset, such as random rotations and flips.
D. Applying TF-IDF to the text data to reduce the impact of common words.
E. Implementing modality-specific weighting in the loss function, giving a higher weight to the image loss.
正解:E
解説: (Topexam メンバーにのみ表示されます)

質問 4:
You are tasked with analyzing a large dataset of images used for training a generative A1 model. The dataset contains noisy labels and varying image quality. Which of the following preprocessing steps are MOST crucial for improving the performance of your model?
A. Using a pre-trained image quality assessment model to filter out low-quality images.
B. Resizing all images to a fixed resolution (e.g., 256x256).
C. Implementing a label smoothing technique to mitigate the impact of noisy labels.
D. Converting all images to grayscale to reduce computational complexity.
E. Applying aggressive data augmentation techniques like random rotations and flips.
正解:A,C
解説: (Topexam メンバーにのみ表示されます)

質問 5:
You are tasked with generating realistic images of human faces using a GAN. However, you notice that the generated images often contain artifacts, such as distorted facial features or unrealistic textures. Which of the following techniques would be most effective in improving the realism and quality of the generated faces?
A. Employing a StyleGAN architecture with adaptive instance normalization (AdalN) and mapping network.
B. Applying L1 regularization to the generator's weights.
C. Training the GAN for fewer epochs.
D. Using a smaller batch size.
E. Using a simpler discriminator architecture.
正解:A
解説: (Topexam メンバーにのみ表示されます)

質問 6:
You are tasked with building a system that can answer questions based on both an image and a corresponding text description. The image is represented as a feature vector from a CNN, and the text is represented as a sequence of word embeddings from a pre-trained language model. Which architecture would be most suitable for this task?
A. A recurrent neural network (RNN) that processes the text and then uses the final hidden state to attend to the image features.
B. A Transformer-based architecture with cross-attention mechanisms that allow the model to attend to both the image and text features simultaneously.
C. Two separate models, one for processing images and another for processing text, with the final answer being chosen based on the higher confidence score.
D. A combination of a CNN and an LSTM, where the CNN processes the image and the LSTM processes the text independently.
E. A simple feedforward neural network that concatenates the image and text feature vectors.
正解:B
解説: (Topexam メンバーにのみ表示されます)

質問 7:
You are developing a multimodal model that combines text and tabular data for predicting customer churn. The text data consists of customer reviews, and the tabular data includes demographics and transaction history. You've preprocessed both datasets. Which of the following approaches would be the MOST effective for integrating these modalities?
A. Concatenate the raw text and tabular data into a single feature vector.
B. Convert the text data into numerical features using techniques like TF-IDF, then concatenate these features with the tabular data.
C. Use a Transformer-based model to encode the text and a separate neural network for the tabular data, then fuse the embeddings.
D. Train separate models for text and tabular data, then average their predictions.
E. All of the above.
正解:B,C
解説: (Topexam メンバーにのみ表示されます)

一年間の無料更新サービスを提供します

君が弊社のNVIDIA NCA-GENMをご購入になってから、我々の承諾する一年間の更新サービスが無料で得られています。弊社の専門家たちは毎日更新状態を検査していますから、この一年間、更新されたら、弊社は更新されたNVIDIA NCA-GENMをお客様のメールアドレスにお送りいたします。だから、お客様はいつもタイムリーに更新の通知を受けることができます。我々は購入した一年間でお客様がずっと最新版のNVIDIA NCA-GENMを持っていることを保証します。

TopExamは君にNCA-GENMの問題集を提供して、あなたの試験への復習にヘルプを提供して、君に難しい専門知識を楽に勉強させます。TopExamは君の試験への合格を期待しています。

弊社は無料NVIDIA NCA-GENMサンプルを提供します

お客様は問題集を購入する時、問題集の質量を心配するかもしれませんが、我々はこのことを解決するために、お客様に無料NCA-GENMサンプルを提供いたします。そうすると、お客様は購入する前にサンプルをダウンロードしてやってみることができます。君はこのNCA-GENM問題集は自分に適するかどうか判断して購入を決めることができます。

NCA-GENM試験ツール:あなたの訓練に便利をもたらすために、あなたは自分のペースによって複数のパソコンで設置できます。

安全的な支払方式を利用しています

Credit Cardは今まで全世界の一番安全の支払方式です。少数の手続きの費用かかる必要がありますとはいえ、保障があります。お客様の利益を保障するために、弊社のNCA-GENM問題集は全部Credit Cardで支払われることができます。

領収書について:社名入りの領収書が必要な場合、メールで社名に記入していただき送信してください。弊社はPDF版の領収書を提供いたします。

弊社は失敗したら全額で返金することを承諾します

我々は弊社のNCA-GENM問題集に自信を持っていますから、試験に失敗したら返金する承諾をします。我々のNVIDIA NCA-GENMを利用して君は試験に合格できると信じています。もし試験に失敗したら、我々は君の支払ったお金を君に全額で返して、君の試験の失敗する経済損失を減少します。

弊社のNVIDIA NCA-GENMを利用すれば試験に合格できます

弊社のNVIDIA NCA-GENMは専門家たちが長年の経験を通して最新のシラバスに従って研究し出した勉強資料です。弊社はNCA-GENM問題集の質問と答えが間違いないのを保証いたします。

NCA-GENM無料ダウンロード

この問題集は過去のデータから分析して作成されて、カバー率が高くて、受験者としてのあなたを助けて時間とお金を節約して試験に合格する通過率を高めます。我々の問題集は的中率が高くて、100%の合格率を保証します。我々の高質量のNVIDIA NCA-GENMを利用すれば、君は一回で試験に合格できます。

NVIDIA Generative AI Multimodal 認定 NCA-GENM 試験問題:

1. You are analyzing a dataset of customer reviews for a Generative A1-powered product. You want to identify the key themes and topics that customers are discussing. Which technique would be MOST appropriate for this task?

A) Sentiment analysis to determine the overall positive or negative sentiment.
B) Clustering analysis to group customers based on demographics.
C) Topic modeling (e.g., LDA, NMF) to discover underlying themes in the reviews.
D) Regression analysis to predict customer satisfaction scores.
E) Time series analysis to track review volume over time.


2. Which of the following evaluation metrics is MOST appropriate for assessing the performance of a multimodal generative A1 model that generates image captions based on images and audio descriptions?

A) BLEU (Bilingual Evaluation Understudy)
B) Mean Squared Error (MSE)
C) Root Mean Squared Error (RMSE)
D) Perplexity
E) Inception Score


3. You are training a Generative Adversarial Network (GAN) for image synthesis. The discriminator loss is consistently near zero while the generator loss fluctuates significantly. Which of the following is the most likely cause and the best approach to address it?

A) The discriminator is too weak; increase its capacity by adding more layers or filters.
B) The learning rate for the discriminator is too high; decrease it substantially.
C) Mode collapse is occurring; implement techniques like mini-batch discrimination or spectral normalization.
D) The training data is insufficient; augment the dataset with more diverse images.
E) The generator is too weak; reduce its capacity to simplify the learning task.


4. Consider a scenario where you are using a pre-trained multimodal model for image captioning and want to fine-tune it on a specific dataset. Which of the following strategies is MOST likely to lead to improved performance and faster convergence?

A) Fine-tune the entire model with a smaller learning rate and gradually unfreeze layers, starting from the captioning head.
B) Train a new captioning head from scratch while keeping the image encoder frozen.
C) Fine-tune the entire model (image encoder and captioning head) with a very large learning rate.
D) Fine-tune only the captioning head (language model) while keeping the image encoder frozen.
E) Randomly initialize the entire model and train from scratch.


5. You are building a text-to-image generation pipeline using CLIP and a diffusion model. After training, you notice that the generated images often lack the specific details mentioned in the text prompts. Which of the following strategies could you employ to improve the alignment between text and image?

A) Increase the number of diffusion steps during the image generation process.
B) Fine-tune the CLIP model on a dataset of text-image pairs relevant to your desired domain.
C) Increase the number of layers in the I-I-Net architecture of the diffusion model.
D) Use negative prompt engineering to guide the diffusion process away from undesired attributes.
E) All of the above.


質問と回答:

質問 # 1
正解: C
質問 # 2
正解: A
質問 # 3
正解: C
質問 # 4
正解: A
質問 # 5
正解: E

NCA-GENM 関連試験
NCA-AIIO - NVIDIA-Certified Associate AI Infrastructure and Operations
NCA-GENL - NVIDIA Generative AI LLMs
連絡方法  
 [email protected] サポート

試用版をダウンロード

人気のベンダー
Apple
Avaya
CIW
FileMaker
Lotus
Lpi
OMG
SNIA
Symantec
XML Master
Zend-Technologies
The Open Group
H3C
3COM
ACI
すべてのベンダー
TopExam問題集を選ぶ理由は何でしょうか?
 品質保証TopExamは我々の専門家たちの努力によって、過去の試験のデータが分析されて、数年以来の研究を通して開発されて、多年の研究への整理で、的中率が高くて99%の通過率を保証することができます。
 一年間の無料アップデートTopExamは弊社の商品をご購入になったお客様に一年間の無料更新サービスを提供することができ、行き届いたアフターサービスを提供します。弊社は毎日更新の情況を検査していて、もし商品が更新されたら、お客様に最新版をお送りいたします。お客様はその一年でずっと最新版を持っているのを保証します。
 全額返金弊社の商品に自信を持っているから、失敗したら全額で返金することを保証します。弊社の商品でお客様は試験に合格できると信じていますとはいえ、不幸で試験に失敗する場合には、弊社はお客様の支払ったお金を全額で返金するのを承諾します。(全額返金)
 ご購入の前の試用TopExamは無料なサンプルを提供します。弊社の商品に疑問を持っているなら、無料サンプルを体験することができます。このサンプルの利用を通して、お客様は弊社の商品に自信を持って、安心で試験を準備することができます。