HACKER SAFEにより証明されたサイトは、99.9%以上のハッカー犯罪を防ぎます。
カート(0

Databricks Databricks-Certified-Professional-Data-Engineer 問題集

Databricks-Certified-Professional-Data-Engineer

試験コード:Databricks-Certified-Professional-Data-Engineer

試験名称:Databricks Certified Professional Data Engineer Exam

最近更新時間:2025-10-02

問題と解答:全138問

Databricks-Certified-Professional-Data-Engineer 無料でデモをダウンロード:

PDF版 Demo ソフト版 Demo オンライン版 Demo

追加した商品:"PDF版"
価格: ¥6599 

無料問題集Databricks-Certified-Professional-Data-Engineer 資格取得

質問 1:
A table in the Lakehouse named customer_churn_params is used in churn prediction by the machine learning team. The table contains information about customers derived from a number of upstream sources. Currently, the data engineering team populates this table nightly by overwriting the table with the current valid values derived from upstream data sources.
The churn prediction model used by the ML team is fairly stable in production. The team is only interested in making predictions on records that have changed in the past 24 hours.
Which approach would simplify the identification of these changed records?
A. Replace the current overwrite logic with a merge statement to modify only those records that have changed; write logic to make predictions on the changed records identified by the change data feed.
B. Calculate the difference between the previous model predictions and the current customer_churn_params on a key identifying unique customers before making new predictions; only make predictions on those customers not in the previous predictions.
C. Convert the batch job to a Structured Streaming job using the complete output mode; configure a Structured Streaming job to read from the customer_churn_params table and incrementally predict against the churn model.
D. Apply the churn model to all rows in the customer_churn_params table, but implement logic to perform an upsert into the predictions table that ignores rows where predictions have not changed.
E. Modify the overwrite logic to include a field populated by calling spark.sql.functions.
current_timestamp() as data are being written; use this field to identify records written on a particular date.
正解:A
解説: (Topexam メンバーにのみ表示されます)

質問 2:
A junior data engineer has manually configured a series of jobs using the Databricks Jobs UI. Upon reviewing their work, the engineer realizes that they are listed as the "Owner" for each job. They attempt to transfer
"Owner" privileges to the "DevOps" group, but cannot successfully accomplish this task.
Which statement explains what is preventing this privilege transfer?
A. Other than the default "admins" group, only individual users can be granted privileges on jobs.
B. A user can only transfer job ownership to a group if they are also a member of that group.
C. Only workspace administrators can grant "Owner" privileges to a group.
D. Databricks jobs must have exactly one owner; "Owner" privileges cannot be assigned to a group.
E. The creator of a Databricks job will always have "Owner" privileges; this configuration cannot be changed.
正解:D
解説: (Topexam メンバーにのみ表示されます)

質問 3:
A Delta Lake table was created with the below query:

Realizing that the original query had a typographical error, the below code was executed:
ALTER TABLE prod.sales_by_stor RENAME TO prod.sales_by_store
Which result will occur after running the second command?
A. All related files and metadata are dropped and recreated in a single ACID transaction.
B. The table reference in the metastore is updated and no data is changed.
C. The table name change is recorded in the Delta transaction log.
D. The table reference in the metastore is updated and all data files are moved.
E. A new Delta transaction log Is created for the renamed table.
正解:B
解説: (Topexam メンバーにのみ表示されます)

質問 4:
A DLT pipeline includes the following streaming tables:
Raw_lot ingest raw device measurement data from a heart rate tracking device.
Bgm_stats incrementally computes user statistics based on BPM measurements from raw_lot.
How can the data engineer configure this pipeline to be able to retain manually deleted or updated records in the raw_iot table while recomputing the downstream table when a pipeline update is run?
A. Set the pipelines, reset, allowed property to false on bpm_stats
B. Set the SkipChangeCommits flag to true raw_lot
C. Set the pipelines, reset, allowed property to false on raw_iot
D. Set the skipChangeCommits flag to true on bpm_stats
正解:C
解説: (Topexam メンバーにのみ表示されます)

質問 5:
Given the following error traceback (from display(df.select(3*"heartrate"))) which shows AnalysisException:
cannot resolve 'heartrateheartrateheartrate', which statement describes the error being raised?
A. There is a type error because a DataFrame object cannot be multiplied.
B. There is no column in the table named heartrateheartrateheartrate.
C. There is a type error because a column object cannot be multiplied.
D. There is a syntax error because the heartrate column is not correctly identified as a column.
正解:B
解説: (Topexam メンバーにのみ表示されます)

質問 6:
A user new to Databricks is trying to troubleshoot long execution times for some pipeline logic they are working on. Presently, the user is executing code cell-by-cell, using display() calls to confirm code is producing the logically correct results as new transformations are added to an operation. To get a measure of average time to execute, the user is running each cell multiple times interactively.
Which of the following adjustments will get a more accurate measure of how code is likely to perform in production?
A. Calling display () forces a job to trigger, while many transformations will only add to the logical query plan; because of caching, repeated execution of the same logic does not provide meaningful results.
B. The only way to meaningfully troubleshoot code execution times in development notebooks Is to use production-sized data and production-sized clusters with Run All execution.
C. Scala is the only language that can be accurately tested using interactive notebooks; because the best performance is achieved by using Scala code compiled to JARs. all PySpark and Spark SQL logic should be refactored.
D. Production code development should only be done using an IDE; executing code against a local build of open source Spark and Delta Lake will provide the most accurate benchmarks for how code will perform in production.
E. The Jobs Ul should be leveraged to occasionally run the notebook as a job and track execution time during incremental code development because Photon can only be enabled on clusters launched for scheduled jobs.
正解:A
解説: (Topexam メンバーにのみ表示されます)

弊社は無料Databricks Databricks-Certified-Professional-Data-Engineerサンプルを提供します

お客様は問題集を購入する時、問題集の質量を心配するかもしれませんが、我々はこのことを解決するために、お客様に無料Databricks-Certified-Professional-Data-Engineerサンプルを提供いたします。そうすると、お客様は購入する前にサンプルをダウンロードしてやってみることができます。君はこのDatabricks-Certified-Professional-Data-Engineer問題集は自分に適するかどうか判断して購入を決めることができます。

Databricks-Certified-Professional-Data-Engineer試験ツール:あなたの訓練に便利をもたらすために、あなたは自分のペースによって複数のパソコンで設置できます。

安全的な支払方式を利用しています

Credit Cardは今まで全世界の一番安全の支払方式です。少数の手続きの費用かかる必要がありますとはいえ、保障があります。お客様の利益を保障するために、弊社のDatabricks-Certified-Professional-Data-Engineer問題集は全部Credit Cardで支払われることができます。

領収書について:社名入りの領収書が必要な場合、メールで社名に記入していただき送信してください。弊社はPDF版の領収書を提供いたします。

弊社は失敗したら全額で返金することを承諾します

我々は弊社のDatabricks-Certified-Professional-Data-Engineer問題集に自信を持っていますから、試験に失敗したら返金する承諾をします。我々のDatabricks Databricks-Certified-Professional-Data-Engineerを利用して君は試験に合格できると信じています。もし試験に失敗したら、我々は君の支払ったお金を君に全額で返して、君の試験の失敗する経済損失を減少します。

Databricks Databricks-Certified-Professional-Data-Engineer 認定試験の出題範囲:

トピック出題範囲
トピック 1
  • Data Modeling: It focuses on understanding the objectives of data transformations, using Change Data Feed, applying Delta Lake cloning, designing multiplex bronze tables. Lastly it discusses implementing incremental processing and data quality enforcement, implementing lookup tables, and implementing Slowly Changing Dimension tables, and implementing SCD Type 0, 1, and 2 tables.
トピック 2
  • Testing & Deployment: It discusses adapting notebook dependencies to use Python file dependencies, leveraging Wheels for imports, repairing and rerunning failed jobs, creating jobs based on common use cases, designing systems to control cost and latency SLAs, configuring the Databricks CLI, and using the REST API to clone a job, trigger a run, and export the run output.
トピック 3
  • Databricks Tooling: The Databricks Tooling topic encompasses the various features and functionalities of Delta Lake. This includes understanding the transaction log, Optimistic Concurrency Control, Delta clone, indexing optimizations, and strategies for partitioning data for optimal performance in the Databricks SQL service.
トピック 4
  • Data Processing: The topic covers understanding partition hints, partitioning data effectively, controlling part-file sizes, updating records, leveraging Structured Streaming and Delta Lake, implementing stream-static joins and deduplication. Additionally, it delves into utilizing Change Data Capture and addressing performance issues related to small files.
トピック 5
  • Security & Governance: It discusses creating Dynamic views to accomplishing data masking and using dynamic views to control access to rows and columns.

参照:https://www.databricks.com/learn/certification/data-engineer-professional

一年間の無料更新サービスを提供します

君が弊社のDatabricks Databricks-Certified-Professional-Data-Engineerをご購入になってから、我々の承諾する一年間の更新サービスが無料で得られています。弊社の専門家たちは毎日更新状態を検査していますから、この一年間、更新されたら、弊社は更新されたDatabricks Databricks-Certified-Professional-Data-Engineerをお客様のメールアドレスにお送りいたします。だから、お客様はいつもタイムリーに更新の通知を受けることができます。我々は購入した一年間でお客様がずっと最新版のDatabricks Databricks-Certified-Professional-Data-Engineerを持っていることを保証します。

TopExamは君にDatabricks-Certified-Professional-Data-Engineerの問題集を提供して、あなたの試験への復習にヘルプを提供して、君に難しい専門知識を楽に勉強させます。TopExamは君の試験への合格を期待しています。

弊社のDatabricks Databricks-Certified-Professional-Data-Engineerを利用すれば試験に合格できます

弊社のDatabricks Databricks-Certified-Professional-Data-Engineerは専門家たちが長年の経験を通して最新のシラバスに従って研究し出した勉強資料です。弊社はDatabricks-Certified-Professional-Data-Engineer問題集の質問と答えが間違いないのを保証いたします。

Databricks-Certified-Professional-Data-Engineer無料ダウンロード

この問題集は過去のデータから分析して作成されて、カバー率が高くて、受験者としてのあなたを助けて時間とお金を節約して試験に合格する通過率を高めます。我々の問題集は的中率が高くて、100%の合格率を保証します。我々の高質量のDatabricks Databricks-Certified-Professional-Data-Engineerを利用すれば、君は一回で試験に合格できます。

Databricks-Certified-Professional-Data-Engineer 関連試験
Associate-Developer-Apache-Spark - Databricks Certified Associate Developer for Apache Spark 3.0 Exam
Databricks-Certified-Data-Engineer-Associate - Databricks Certified Data Engineer Associate Exam
Databricks-Certified-Data-Engineer-Professional - Databricks Certified Data Engineer Professional Exam
Databricks-Certified-Professional-Data-Scientist - Databricks Certified Professional Data Scientist Exam
Associate-Developer-Apache-Spark-3.5 - Databricks Certified Associate Developer for Apache Spark 3.5 - Python
連絡方法  
 [email protected] サポート

試用版をダウンロード

人気のベンダー
Apple
Avaya
CIW
FileMaker
Lotus
Lpi
OMG
SNIA
Symantec
XML Master
Zend-Technologies
The Open Group
H3C
3COM
ACI
すべてのベンダー
TopExam問題集を選ぶ理由は何でしょうか?
 品質保証TopExamは我々の専門家たちの努力によって、過去の試験のデータが分析されて、数年以来の研究を通して開発されて、多年の研究への整理で、的中率が高くて99%の通過率を保証することができます。
 一年間の無料アップデートTopExamは弊社の商品をご購入になったお客様に一年間の無料更新サービスを提供することができ、行き届いたアフターサービスを提供します。弊社は毎日更新の情況を検査していて、もし商品が更新されたら、お客様に最新版をお送りいたします。お客様はその一年でずっと最新版を持っているのを保証します。
 全額返金弊社の商品に自信を持っているから、失敗したら全額で返金することを保証します。弊社の商品でお客様は試験に合格できると信じていますとはいえ、不幸で試験に失敗する場合には、弊社はお客様の支払ったお金を全額で返金するのを承諾します。(全額返金)
 ご購入の前の試用TopExamは無料なサンプルを提供します。弊社の商品に疑問を持っているなら、無料サンプルを体験することができます。このサンプルの利用を通して、お客様は弊社の商品に自信を持って、安心で試験を準備することができます。