質問 1:The viewupdatesrepresents an incremental batch of all newly ingested data to be inserted or updated in the customerstable.
The following logic is used to process these records.

Which statement describes this implementation?
A. The customers table is implemented as a Type 2 table; old values are overwritten and new customers are appended.
B. The customers table is implemented as a Type 1 table; old values are overwritten by new values and no history is maintained.
C. The customers table is implemented as a Type 3 table; old values are maintained as a new column alongside the current value.
D. The customers table is implemented as a Type 0 table; all writes are append only with no changes to existing values.
E. The customers table is implemented as a Type 2 table; old values are maintained but marked as no longer current and new values are inserted.
正解:E
解説: (Topexam メンバーにのみ表示されます)
質問 2:A platform engineer is creating catalogs and schemas for the development team to use.
The engineer has created an initial catalog, catalog_A, and initial schema, schema_A. The engineer has also granted USE CATALOG, USE SCHEMA, and CREATE TABLE to the development team so that the engineer can begin populating the schema with new tables.
Despite being owner of the catalog and schema, the engineer noticed that they do not have access to the underlying tables in Schema_A.
What explains the engineer's lack of access to the underlying tables?
A. Users granted with USE CATALOG can modify the owner's permissions to downstream tables.
B. Permissions explicitly given by the table creator are the only way the Platform Engineer could access the underlying tables in their schema.
C. The owner of the schema does not automatically have permission to tables within the schema, but can grant them to themselves at anypoint.
D. The platform engineer needs to execute a REFRESH statement as the table permissions did not automatically update for owners.
正解:C
解説: (Topexam メンバーにのみ表示されます)
質問 3:A Databricks job has been configured with 3 tasks, each of which is a Databricks notebook. Task A does not depend on other tasks. Tasks B and C run in parallel, with each having a serial dependency on task A.
If tasks A and B complete successfully but task C fails during a scheduled run, which statement describes the resulting state?
A. All logic expressed in the notebook associated with tasks A and B will have been successfully completed; any changes made in task C will be rolled back due to task failure.
B. All logic expressed in the notebook associated with tasks A and B will have been successfully completed; some operations in task C may have completed successfully.
C. Because all tasks are managed as a dependency graph, no changes will be committed to the Lakehouse until ail tasks have successfully been completed.
D. Unless all tasks complete successfully, no changes will be committed to the Lakehouse; because task C failed, all commits will be rolled back automatically.
E. All logic expressed in the notebook associated with task A will have been successfully completed; tasks B and C will not commit any changes because of stage failure.
正解:B
解説: (Topexam メンバーにのみ表示されます)
質問 4:The downstream consumers of a Delta Lake table have been complaining about data quality issues impacting performance in their applications. Specifically, they have complained that invalidlatitudeandlongitudevalues in theactivity_detailstable have been breaking their ability to use other geolocation processes.
A junior engineer has written the following code to addCHECKconstraints to the Delta Lake table:

A senior engineer has confirmed the above logic is correct and the valid ranges for latitude and longitude are provided, but the code fails when executed.
Which statement explains the cause of this failure?
A. The activity details table already contains records; CHECK constraints can only be added prior to inserting values into a table.
B. The activity details table already contains records that violate the constraints; all existing data must pass CHECK constraints in order to add them to an existing table.
C. The current table schema does not contain the field valid coordinates; schema evolution will need to be enabled before altering the table to add a constraint.
D. The activity details table already exists; CHECK constraints can only be added during initial table creation.
E. Because another team uses this table to support a frequently running application, two-phase locking is preventing the operation from committing.
正解:B
解説: (Topexam メンバーにのみ表示されます)
質問 5:A Delta Lake table in the Lakehouse named customer_parsams is used in churn prediction by the machine learning team. The table contains information about customers derived from a number of upstream sources.
Currently, the data engineering team populates this table nightly by overwriting the table with the current valid values derived from upstream data sources.
Immediately after each update succeeds, the data engineer team would like to determine the difference between the new version and the previous of the table.
Given the current implementation, which method can be used?
A. Parse the Delta Lake transaction log to identify all newly written data files.
B. Execute a query to calculate the difference between the new version and the previous version using Delta Lake's built-in versioning and time travel functionality.
C. Execute DESCRIBE HISTORY customer_churn_params to obtain the full operation metrics for the update, including a log of all records that have been added or modified.
D. Parse the Spark event logs to identify those rows that were updated, inserted, or deleted.
正解:B
解説: (Topexam メンバーにのみ表示されます)
質問 6:A nightly job ingests data into a Delta Lake table using the following code:

The next step in the pipeline requires a function that returns an object that can be used to manipulate new records that have not yet been processed to the next table in the pipeline.
Which code snippet completes this function definition?
def new_records():
A. return spark.readStream.load("bronze")
B.
C. return spark.read.option("readChangeFeed", "true").table ("bronze")
D.
E. return spark.readStream.table("bronze")
正解:B
解説: (Topexam メンバーにのみ表示されます)
TopExamは君にDatabricks-Certified-Professional-Data-Engineerの問題集を提供して、あなたの試験への復習にヘルプを提供して、君に難しい専門知識を楽に勉強させます。TopExamは君の試験への合格を期待しています。
弊社のDatabricks Databricks-Certified-Professional-Data-Engineerを利用すれば試験に合格できます
弊社のDatabricks Databricks-Certified-Professional-Data-Engineerは専門家たちが長年の経験を通して最新のシラバスに従って研究し出した勉強資料です。弊社はDatabricks-Certified-Professional-Data-Engineer問題集の質問と答えが間違いないのを保証いたします。

この問題集は過去のデータから分析して作成されて、カバー率が高くて、受験者としてのあなたを助けて時間とお金を節約して試験に合格する通過率を高めます。我々の問題集は的中率が高くて、100%の合格率を保証します。我々の高質量のDatabricks Databricks-Certified-Professional-Data-Engineerを利用すれば、君は一回で試験に合格できます。
一年間の無料更新サービスを提供します
君が弊社のDatabricks Databricks-Certified-Professional-Data-Engineerをご購入になってから、我々の承諾する一年間の更新サービスが無料で得られています。弊社の専門家たちは毎日更新状態を検査していますから、この一年間、更新されたら、弊社は更新されたDatabricks Databricks-Certified-Professional-Data-Engineerをお客様のメールアドレスにお送りいたします。だから、お客様はいつもタイムリーに更新の通知を受けることができます。我々は購入した一年間でお客様がずっと最新版のDatabricks Databricks-Certified-Professional-Data-Engineerを持っていることを保証します。
弊社は無料Databricks Databricks-Certified-Professional-Data-Engineerサンプルを提供します
お客様は問題集を購入する時、問題集の質量を心配するかもしれませんが、我々はこのことを解決するために、お客様に無料Databricks-Certified-Professional-Data-Engineerサンプルを提供いたします。そうすると、お客様は購入する前にサンプルをダウンロードしてやってみることができます。君はこのDatabricks-Certified-Professional-Data-Engineer問題集は自分に適するかどうか判断して購入を決めることができます。
Databricks-Certified-Professional-Data-Engineer試験ツール:あなたの訓練に便利をもたらすために、あなたは自分のペースによって複数のパソコンで設置できます。
弊社は失敗したら全額で返金することを承諾します
我々は弊社のDatabricks-Certified-Professional-Data-Engineer問題集に自信を持っていますから、試験に失敗したら返金する承諾をします。我々のDatabricks Databricks-Certified-Professional-Data-Engineerを利用して君は試験に合格できると信じています。もし試験に失敗したら、我々は君の支払ったお金を君に全額で返して、君の試験の失敗する経済損失を減少します。
安全的な支払方式を利用しています
Credit Cardは今まで全世界の一番安全の支払方式です。少数の手続きの費用かかる必要がありますとはいえ、保障があります。お客様の利益を保障するために、弊社のDatabricks-Certified-Professional-Data-Engineer問題集は全部Credit Cardで支払われることができます。
領収書について:社名入りの領収書が必要な場合、メールで社名に記入していただき送信してください。弊社はPDF版の領収書を提供いたします。
Databricks Databricks-Certified-Professional-Data-Engineer 認定試験の出題範囲:
トピック | 出題範囲 |
---|
トピック 1 | - Testing & Deployment: It discusses adapting notebook dependencies to use Python file dependencies, leveraging Wheels for imports, repairing and rerunning failed jobs, creating jobs based on common use cases, designing systems to control cost and latency SLAs, configuring the Databricks CLI, and using the REST API to clone a job, trigger a run, and export the run output.
|
トピック 2 | - Databricks Tooling: The Databricks Tooling topic encompasses the various features and functionalities of Delta Lake. This includes understanding the transaction log, Optimistic Concurrency Control, Delta clone, indexing optimizations, and strategies for partitioning data for optimal performance in the Databricks SQL service.
|
トピック 3 | - Data Processing: The topic covers understanding partition hints, partitioning data effectively, controlling part-file sizes, updating records, leveraging Structured Streaming and Delta Lake, implementing stream-static joins and deduplication. Additionally, it delves into utilizing Change Data Capture and addressing performance issues related to small files.
|
トピック 4 | - Data Modeling: It focuses on understanding the objectives of data transformations, using Change Data Feed, applying Delta Lake cloning, designing multiplex bronze tables. Lastly it discusses implementing incremental processing and data quality enforcement, implementing lookup tables, and implementing Slowly Changing Dimension tables, and implementing SCD Type 0, 1, and 2 tables.
|
トピック 5 | - Monitoring & Logging: This topic includes understanding the Spark UI, inspecting event timelines and metrics, drawing conclusions from various UIs, designing systems to control cost and latency SLAs for production streaming jobs, and deploying and monitoring both streaming and batch jobs.
|
参照:https://www.databricks.com/learn/certification/data-engineer-professional