HACKER SAFEにより証明されたサイトは、99.9%以上のハッカー犯罪を防ぎます。
カート(0

SOA S90.08B 問題集

S90.08B

試験コード:S90.08B

試験名称:SOA Design & Architecture Lab with Services & Microservices

最近更新時間:2024-05-01

問題と解答:全17問

S90.08B 無料でデモをダウンロード:

PDF版 Demo ソフト版 Demo オンライン版 Demo

追加した商品:"PDF版"
価格: ¥6599 

無料問題集S90.08B 資格取得

質問 1:
Refer to Exhibit.

Service A sends a message to Service B (1). After Service B writes the message contents to Database A (2), it issues a response message back to Service A (3). Service A then sends a message to Service C (4). Upon receiving this message, Service C sends a message to Service D (5), which then writes the message contents to Database B (6) and issues a response message back to Service C (7).
Service A and Service D are located in Service Inventory A. Service B and Service C are located in Service Inventory B.
You are told that In this service composition architecture, all four services are exchanging invoice-related data in an XML format. However, the services in Service Inventory A are standardized to use a different XML schema for invoice data than the services in Service Inventory B. Also, Database A can only accept data in the Comma Separated Value (CSV) format and therefore cannot accept XML-formatted data. Database B only accepts XML-formatted data. However, it is a legacy database that uses a proprietary XML schema to represent invoice data that is different from the XML schema used by services in Service Inventory A or Service Inventory B.
What steps can be taken to enable the planned data exchange between these four services?
A. The Data Model Transformation pattern can be applied so that data model transformation logic is positioned between Service A and Service B, between Service A and Service C, between Service C and Service D, and between the Service D logic and Database B. The Data Format Transformation pattern can be applied so that data format transformation logic is positioned between the Service B logic and Database A.
B. The Data Model Transformation pattern can be applied so that data model transformation logic is positioned between Service A and Service B, between Service C and Service D, and between the Service D logic and Database B. The Data Format Transformation pattern can be applied so that data format transformation logic is positioned between Service A and Service C, and between the Service B logic and Database A.
C. The Protocol Bridging pattern can be applied so that protocol conversion logic is positioned between Service A and Service B, between Service A and Service C, and between Service C and Service D. The Data Format Transformation pattern can be applied so that data format transformation logic is positioned between the Service B logic and Database A and between the Service D logic and Database B.
D. The Protocol Bridging pattern can be applied so that protocol conversion logic is positioned between the Service B logic and Database A. The Data Format Transformation pattern can be applied so that data format transformation logic is positioned between Service A and Service B, between Service A and Service C, between Service C and Service D, and between the Service D logic and Database B.
正解:A
解説: (Topexam メンバーにのみ表示されます)

質問 2:
Refer to Exhibit.

Service Consumer A sends a message to Service A (1), which then forwards the message to Service B (2). Service B forwards the message to Service C (3), which finally forwards the message to Service D (4). However, Services A, B and C each contain logic that reads the contents of the message to determine what intermediate processing to perform and which service to forward the message to. As a result, what is shown in the diagram is only one of several possible runtime scenarios.
Currently, this service composition architecture is performing adequately, despite the number of services that can be involved in the transmission of one message. However, you are told that new logic is being added to Service A that will require it to compose one other service to retrieve new data at runtime that Service A will need access to in order to determine where to forward the message to. The involvement of the additional service will make the service composition too large and slow.
What steps can be taken to improve the service composition architecture while still accommodating the new requirements and avoiding an increase in the amount of service composition members?
A. The Intermediate Routing pattern can be applied together with the Service Agent pattern to establish a service agent capable of intercepting and forwarding the message at runtime based on pre-defined routing logic. The Service Composability principle can be further applied to ensure that all services are designed as effective service composition participants.
B. The Asynchronous Queuing pattern can be applied together with a Routing service that is invoked by messages read from a messaging queue. This new Routing service can replace Service B and can be accessed by Service A and Service C so they can determine where to forward messages to at runtime. The Service Loose Coupling principle can be further applied to ensure that the new Routing service remains decoupled from other services so that it can perform its routing functions independently from service contract invocation.
C. The Service Instance Routing pattern can be applied to introduce a Routing service to provide a centralized service to contain routing-related business rules. This new Routing service can be accessed by Service A and Service C so they can determine where to forward messages to at runtime. The Service Reusability principle can be further applied to ensure that the logic in all remaining services is designed to be multi-purpose and reusable.
D. The Intermediate Routing pattern can be applied together with the Service Agent pattern by removing Service B or Service C from the service composition and replacing it with a service agent capable of intercepting and forwarding the message at runtime based on pre-defined routing logic. The Service Discoverability principle can be further applied to ensure that Service A can be found by any future service consumers.
正解:A
解説: (Topexam メンバーにのみ表示されます)

弊社は失敗したら全額で返金することを承諾します

我々は弊社のS90.08B問題集に自信を持っていますから、試験に失敗したら返金する承諾をします。我々のSOA S90.08Bを利用して君は試験に合格できると信じています。もし試験に失敗したら、我々は君の支払ったお金を君に全額で返して、君の試験の失敗する経済損失を減少します。

TopExamは君にS90.08Bの問題集を提供して、あなたの試験への復習にヘルプを提供して、君に難しい専門知識を楽に勉強させます。TopExamは君の試験への合格を期待しています。

一年間の無料更新サービスを提供します

君が弊社のSOA S90.08Bをご購入になってから、我々の承諾する一年間の更新サービスが無料で得られています。弊社の専門家たちは毎日更新状態を検査していますから、この一年間、更新されたら、弊社は更新されたSOA S90.08Bをお客様のメールアドレスにお送りいたします。だから、お客様はいつもタイムリーに更新の通知を受けることができます。我々は購入した一年間でお客様がずっと最新版のSOA S90.08Bを持っていることを保証します。

弊社のSOA S90.08Bを利用すれば試験に合格できます

弊社のSOA S90.08Bは専門家たちが長年の経験を通して最新のシラバスに従って研究し出した勉強資料です。弊社はS90.08B問題集の質問と答えが間違いないのを保証いたします。

S90.08B無料ダウンロード

この問題集は過去のデータから分析して作成されて、カバー率が高くて、受験者としてのあなたを助けて時間とお金を節約して試験に合格する通過率を高めます。我々の問題集は的中率が高くて、100%の合格率を保証します。我々の高質量のSOA S90.08Bを利用すれば、君は一回で試験に合格できます。

安全的な支払方式を利用しています

Credit Cardは今まで全世界の一番安全の支払方式です。少数の手続きの費用かかる必要がありますとはいえ、保障があります。お客様の利益を保障するために、弊社のS90.08B問題集は全部Credit Cardで支払われることができます。

領収書について:社名入りの領収書が必要な場合、メールで社名に記入していただき送信してください。弊社はPDF版の領収書を提供いたします。

弊社は無料SOA S90.08Bサンプルを提供します

お客様は問題集を購入する時、問題集の質量を心配するかもしれませんが、我々はこのことを解決するために、お客様に無料S90.08Bサンプルを提供いたします。そうすると、お客様は購入する前にサンプルをダウンロードしてやってみることができます。君はこのS90.08B問題集は自分に適するかどうか判断して購入を決めることができます。

S90.08B試験ツール:あなたの訓練に便利をもたらすために、あなたは自分のペースによって複数のパソコンで設置できます。

SOA Design & Architecture Lab with Services & Microservices 認定 S90.08B 試験問題:

1. Refer to Exhibit.

Service A is a task service that sends Service B a message (2) requesting that Service B return data back to Service A in a response message (3). Depending on the response received, Service A may be required to send a message to Service C (4) for which it requires no response.
Before it contacts Service B, Service A must first retrieve a list of code values from its own database (1) and then place this data into its own memory. If it turns out that it must send a message to Service C, then Service A must combine the data it receives from Service B with the data from the code value list in order to create the message it sends to Service C. If Service A is not required to invoke Service C, it can complete its task by discarding the code values.
Service A and Service C reside in Service Inventory A. Service B resides in Service Inventory B.
You are told that the services in Service Inventory A were designed with service contracts that are based on different design standards and technologies than the services In Service Inventory B. As a result, Service A is a SOAP-based Web service and Service B Is a REST service that exchanges JSON-formatted messages. Therefore, Service A and Service B cannot currently communicate. Furthermore, Service C is an agnostic service that is heavily accessed by many concurrent service consumers. Service C frequently reaches its usage thresholds, during which it is not available and messages sent to it are not received.
What steps can be taken to solve these problems?

A) The Data Model Transformation pattern can be applied by establishing an intermediate processing layer between Service A and Service B that can transform a message from one data model to another at runtime. The Intermediate Routing and Service Agent patterns can be applied so that when Service B sends a response message, a service agent can intercept the message and, based on its contents, either forward the message to Service A or route the message to Service C. The Service Statelessness principle can be applied with the help of the State Repository pattern so that Service A can write the code value data to a state database while it is waiting for Service B to respond.
B) The Data Format Transformation pattern can be applied by establishing an intermediate processing layer between Service A and Service B that can transform a message from one data format to another at runtime. The Asynchronous Queuing pattern can be applied to establish an intermediate queue between Service A and Service B so that when Service A needs to send a message to Service B, the queue will store the message and retransmit it to Service B until it is successfully delivered. The Service Reusability principle can be further applied to Service C together with the Redundant Implementation pattern to help establish a more reusable and scalable service architecture.
C) The Data Model Transformation pattern can be applied by establishing an intermediate processing layer between Service A and Service B that can transform a message from one data model to another at runtime. The Intermediate Routing and Service Agent patterns can be applied so that when Service B sends a response message, a service agent can intercept the message and, based on its contents, either forward the message to Service A or route the message to Service C. The Service Autonomy principle can be further applied to Service C together with the Redundant Implementation pattern to help establish a more reliable and scalable service architecture.
D) The Data Format Transformation pattern can be applied by establishing an intermediate processing layer between Service A and Service B that can transform a message from one data format to another at runtime. The Asynchronous Queuing pattern can be applied to establish an intermediate queue between Service A and Service C so that when Service A needs to send a message to Service C, the queue will store the message and retransmit it to Service C until it is successfully delivered. The Service Autonomy principle can be further applied to Service C together with the Redundant Implementation pattern to help establish a more reliable and scalable service architecture.


2. Refer to Exhibit.

The architecture for Service A displayed in the figure shows how the core logic of Service A has expanded over time to connect to a database and a proprietary legacy system (1), and to support two separate service contracts (2) that are accessed by different service consumers.
The service contracts are fully decoupled from the service logic. The service logic is therefore coupled to the service contracts and to the underlying implementation resources (the database and the legacy system).
Service A currently has three service consumers. Service Consumer A and Service Consumer B access Service A's two service contracts (3, 4). Service Consumer C bypasses the service contracts and accesses the service logic directly (5).
You are told that the database and legacy system that are currently being used by Service A are being replaced with different products. The two service contracts are completely decoupled from the core service logic, but there is still a concern that the introduction of the new products will cause the core service logic to behave differently than before.
What steps can be taken to change the Service A architecture in preparation for the introduction of the new products so that the impact on Service Consumers A and B is minimized? What further step can be taken to avoid consumer-to-implementation coupling with Service Consumer C?

A) A third service contract can be added together with the application of the Contract Centralization pattern. This will force Service Consumer C to access Service A via the new service contract. The Service Fagade pattern can be applied to position a fagade component between the new service contract and Service Consumer C in order to regulate the behavior of Service A. The Service Abstraction principle can be applied to hide the implementation details of Service A so that no future service consumers are designed to access any of Service A's underlying resources directly.
B) The Service Fagade pattern can be applied to position fagade components between the core service logic and Service Consumers A and B. These fagade components will be designed to regulate the behavior of Service A. The Service Abstraction principle can be applied to hide the implementation details of the core service logic of Service A, thereby shielding this logic from changes to the implementation. The Schema Centralization pattern can be applied to force Service Consumer C to access Service A via one of its existing service contracts.
C) The Service Fagade pattern can be applied to position fagade components between the core service logic and the two service contracts. These fagade components will be designed to regulate the behavior of Service A. The Service Loose Coupling principle can be applied to avoid negative forms of coupling.
D) The Service Fagade pattern can be applied to position fagade components between the core service logic and the implementation resources (the database and the legacy system). These fagade components will be designed to insulate the core service logic of Service A from the changes in the underlying implementation resources. The Schema Centralization and Endpoint Redirection patterns can also be applied to force Service Consumer C to access Service A via one of its existing service contracts.


質問と回答:

質問 # 1
正解: D
質問 # 2
正解: D

連絡方法  
 [email protected] サポート

試用版をダウンロード

人気のベンダー
Apple
Avaya
CIW
FileMaker
Lotus
Lpi
OMG
SNIA
Symantec
XML Master
Zend-Technologies
The Open Group
H3C
3COM
ACI
すべてのベンダー
TopExam問題集を選ぶ理由は何でしょうか?
 品質保証TopExamは我々の専門家たちの努力によって、過去の試験のデータが分析されて、数年以来の研究を通して開発されて、多年の研究への整理で、的中率が高くて99%の通過率を保証することができます。
 一年間の無料アップデートTopExamは弊社の商品をご購入になったお客様に一年間の無料更新サービスを提供することができ、行き届いたアフターサービスを提供します。弊社は毎日更新の情況を検査していて、もし商品が更新されたら、お客様に最新版をお送りいたします。お客様はその一年でずっと最新版を持っているのを保証します。
 全額返金弊社の商品に自信を持っているから、失敗したら全額で返金することを保証します。弊社の商品でお客様は試験に合格できると信じていますとはいえ、不幸で試験に失敗する場合には、弊社はお客様の支払ったお金を全額で返金するのを承諾します。(全額返金)
 ご購入の前の試用TopExamは無料なサンプルを提供します。弊社の商品に疑問を持っているなら、無料サンプルを体験することができます。このサンプルの利用を通して、お客様は弊社の商品に自信を持って、安心で試験を準備することができます。