HACKER SAFEにより証明されたサイトは、99.9%以上のハッカー犯罪を防ぎます。
カート(0

Google Professional-Machine-Learning-Engineer 問題集

Professional-Machine-Learning-Engineer

試験コード:Professional-Machine-Learning-Engineer

試験名称:Google Professional Machine Learning Engineer

最近更新時間:2025-04-25

問題と解答:全290問

Professional-Machine-Learning-Engineer 無料でデモをダウンロード:

PDF版 Demo ソフト版 Demo オンライン版 Demo

追加した商品:"PDF版"
価格: ¥6599 

無料問題集Professional-Machine-Learning-Engineer 資格取得

質問 1:
You have been asked to build a model using a dataset that is stored in a medium-sized (~10 GB) BigQuery table. You need to quickly determine whether this data is suitable for model development. You want to create a one-time report that includes both informative visualizations of data distributions and more sophisticated statistical analyses to share with other ML engineers on your team. You require maximum flexibility to create your report. What should you do?
A. Use Vertex AI Workbench user-managed notebooks to generate the report.
B. Use Dataprep to create the report.
C. Use the output from TensorFlow Data Validation on Dataflow to generate the report.
D. Use the Google Data Studio to create the report.
正解:A
解説: (Topexam メンバーにのみ表示されます)

質問 2:
You work on a team that builds state-of-the-art deep learning models by using the TensorFlow framework.
Your team runs multiple ML experiments each week which makes it difficult to track the experiment runs.
You want a simple approach to effectively track, visualize and debug ML experiment runs on Google Cloud while minimizing any overhead code. How should you proceed?
A. Set up Vertex Al Experiments to track metrics and parameters Configure Vertex Al TensorBoard for visualization.
B. Set up a Cloud Function to write and save metrics files to a Cloud Storage Bucket Configure a Google Cloud VM to host TensorBoard locally for visualization.
C. Set up a Vertex Al Workbench notebook instance Use the instance to save metrics data in a Cloud Storage bucket and to host TensorBoard locally for visualization.
D. Set up a Cloud Function to write and save metrics files to a BigQuery table. Configure a Google Cloud VM to host TensorBoard locally for visualization.
正解:A
解説: (Topexam メンバーにのみ表示されます)

質問 3:
You have written unit tests for a Kubeflow Pipeline that require custom libraries. You want to automate the execution of unit tests with each new push to your development branch in Cloud Source Repositories. What should you do?
A. Set up a Cloud Logging sink to a Pub/Sub topic that captures interactions with Cloud Source Repositories. Execute the unit tests using a Cloud Function that is triggered when messages are sent to the Pub/Sub topic
B. Using Cloud Build, set an automated trigger to execute the unit tests when changes are pushed to your development branch.
C. Set up a Cloud Logging sink to a Pub/Sub topic that captures interactions with Cloud Source Repositories Configure a Pub/Sub trigger for Cloud Run, and execute the unit tests on Cloud Run.
D. Write a script that sequentially performs the push to your development branch and executes the unit tests on Cloud Run
正解:B
解説: (Topexam メンバーにのみ表示されます)

質問 4:
You are building a real-time prediction engine that streams files which may contain Personally Identifiable Information (Pll) to Google Cloud. You want to use the Cloud Data Loss Prevention (DLP) API to scan the files. How should you ensure that the Pll is not accessible by unauthorized individuals?
A. Create three buckets of data: Quarantine, Sensitive, and Non-sensitive Write all data to the Quarantine bucket.
B. Stream all files to Google Cloud, and write batches of the data to BigQuery While the data is being written to BigQuery conduct a bulk scan of the data using the DLP API.
C. Periodically conduct a bulk scan of that bucket using the DLP API, and move the data to either the Sensitive or Non-Sensitive bucket
D. Create two buckets of data Sensitive and Non-sensitive Write all data to the Non-sensitive bucket Periodically conduct a bulk scan of that bucket using the DLP API, and move the sensitive data to the Sensitive bucket
E. Stream all files to Google CloudT and then write the data to BigQuery Periodically conduct a bulk scan of the table using the DLP API.
正解:A
解説: (Topexam メンバーにのみ表示されます)

質問 5:
You work for a magazine publisher and have been tasked with predicting whether customers will cancel their annual subscription. In your exploratory data analysis, you find that 90% of individuals renew their subscription every year, and only 10% of individuals cancel their subscription. After training a NN Classifier, your model predicts those who cancel their subscription with 99% accuracy and predicts those who renew their subscription with 82% accuracy. How should you interpret these results?
A. This is not a good result because the model should have a higher accuracy for those who renew their subscription than for those who cancel their subscription.
B. This is a good result because the accuracy across both groups is greater than 80%.
C. This is not a good result because the model is performing worse than predicting that people will always renew their subscription.
D. This is a good result because predicting those who cancel their subscription is more difficult, since there is less data for this group.
正解:C
解説: (Topexam メンバーにのみ表示されます)

質問 6:
You recently used XGBoost to train a model in Python that will be used for online serving Your model prediction service will be called by a backend service implemented in Golang running on a Google Kubemetes Engine (GKE) cluster Your model requires pre and postprocessing steps You need to implement the processing steps so that they run at serving time You want to minimize code changes and infrastructure maintenance and deploy your model into production as quickly as possible. What should you do?
A. Use the XGBoost prebuilt serving container when importing the trained model into Vertex Al Deploy the model to a Vertex Al endpoint Work with the backend engineers to implement the pre- and postprocessing steps in the Golang backend service.
B. Use FastAPI to implement an HTTP server Create a Docker image that runs your HTTP server and deploy it on your organization's GKE cluster.
C. Use FastAPI to implement an HTTP server Create a Docker image that runs your HTTP server Upload the image to Vertex Al Model Registry and deploy it to a Vertex Al endpoint.
D. Use the Predictor interface to implement a custom prediction routine Build the custom contain upload the container to Vertex Al Model Registry, and deploy it to a Vertex Al endpoint.
正解:D
解説: (Topexam メンバーにのみ表示されます)

弊社のGoogle Professional-Machine-Learning-Engineerを利用すれば試験に合格できます

弊社のGoogle Professional-Machine-Learning-Engineerは専門家たちが長年の経験を通して最新のシラバスに従って研究し出した勉強資料です。弊社はProfessional-Machine-Learning-Engineer問題集の質問と答えが間違いないのを保証いたします。

Professional-Machine-Learning-Engineer無料ダウンロード

この問題集は過去のデータから分析して作成されて、カバー率が高くて、受験者としてのあなたを助けて時間とお金を節約して試験に合格する通過率を高めます。我々の問題集は的中率が高くて、100%の合格率を保証します。我々の高質量のGoogle Professional-Machine-Learning-Engineerを利用すれば、君は一回で試験に合格できます。

安全的な支払方式を利用しています

Credit Cardは今まで全世界の一番安全の支払方式です。少数の手続きの費用かかる必要がありますとはいえ、保障があります。お客様の利益を保障するために、弊社のProfessional-Machine-Learning-Engineer問題集は全部Credit Cardで支払われることができます。

領収書について:社名入りの領収書が必要な場合、メールで社名に記入していただき送信してください。弊社はPDF版の領収書を提供いたします。

弊社は失敗したら全額で返金することを承諾します

我々は弊社のProfessional-Machine-Learning-Engineer問題集に自信を持っていますから、試験に失敗したら返金する承諾をします。我々のGoogle Professional-Machine-Learning-Engineerを利用して君は試験に合格できると信じています。もし試験に失敗したら、我々は君の支払ったお金を君に全額で返して、君の試験の失敗する経済損失を減少します。

弊社は無料Google Professional-Machine-Learning-Engineerサンプルを提供します

お客様は問題集を購入する時、問題集の質量を心配するかもしれませんが、我々はこのことを解決するために、お客様に無料Professional-Machine-Learning-Engineerサンプルを提供いたします。そうすると、お客様は購入する前にサンプルをダウンロードしてやってみることができます。君はこのProfessional-Machine-Learning-Engineer問題集は自分に適するかどうか判断して購入を決めることができます。

Professional-Machine-Learning-Engineer試験ツール:あなたの訓練に便利をもたらすために、あなたは自分のペースによって複数のパソコンで設置できます。

一年間の無料更新サービスを提供します

君が弊社のGoogle Professional-Machine-Learning-Engineerをご購入になってから、我々の承諾する一年間の更新サービスが無料で得られています。弊社の専門家たちは毎日更新状態を検査していますから、この一年間、更新されたら、弊社は更新されたGoogle Professional-Machine-Learning-Engineerをお客様のメールアドレスにお送りいたします。だから、お客様はいつもタイムリーに更新の通知を受けることができます。我々は購入した一年間でお客様がずっと最新版のGoogle Professional-Machine-Learning-Engineerを持っていることを保証します。

Google Professional-Machine-Learning-Engineer 認定試験の出題範囲:

トピック出題範囲
トピック 1
  • Collaborating within and across teams to manage data and models: It explores and processes organization-wide data including Apache Spark, Cloud Storage, Apache Hadoop, Cloud SQL, and Cloud Spanner. The topic also discusses using Jupyter Notebooks to model prototypes. Lastly, it discusses tracking and running ML experiments.
トピック 2
  • Serving and scaling models: This section deals with Batch and online inference, using frameworks such as XGBoost, and managing features using VertexAI.
トピック 3
  • Monitoring ML solutions: It identifies risks to ML solutions. Moreover, the topic discusses monitoring, testing, and troubleshooting ML solutions.
トピック 4
  • Automating and orchestrating ML pipelines: This topic focuses on developing end-to-end ML pipelines, automation of model retraining, and lastly tracking and auditing metadata.
トピック 5
  • Scaling prototypes into ML models: This topic covers building and training models. It also focuses on opting for suitable hardware for training.

参照:https://cloud.google.com/certification/guides/machine-learning-engineer

TopExamは君にProfessional-Machine-Learning-Engineerの問題集を提供して、あなたの試験への復習にヘルプを提供して、君に難しい専門知識を楽に勉強させます。TopExamは君の試験への合格を期待しています。

Professional-Machine-Learning-Engineer 関連試験
Associate-Cloud-Engineer - Google Associate Cloud Engineer Exam
Professional-Cloud-Security-Engineer-JPN - Google Cloud Certified - Professional Cloud Security Engineer Exam (Professional-Cloud-Security-Engineer日本語版)
Cloud-Digital-Leader-JPN - Google Cloud Digital Leader (Cloud-Digital-Leader日本語版)
Professional-Collaboration-Engineer-JPN - Google Cloud Certified - Professional Collaboration Engineer (Professional-Collaboration-Engineer日本語版)
Professional-Data-Engineer-JPN - Google Certified Professional Data Engineer Exam (Professional-Data-Engineer日本語版)
連絡方法  
 [email protected] サポート

試用版をダウンロード

人気のベンダー
Apple
Avaya
CIW
FileMaker
Lotus
Lpi
OMG
SNIA
Symantec
XML Master
Zend-Technologies
The Open Group
H3C
3COM
ACI
すべてのベンダー
TopExam問題集を選ぶ理由は何でしょうか?
 品質保証TopExamは我々の専門家たちの努力によって、過去の試験のデータが分析されて、数年以来の研究を通して開発されて、多年の研究への整理で、的中率が高くて99%の通過率を保証することができます。
 一年間の無料アップデートTopExamは弊社の商品をご購入になったお客様に一年間の無料更新サービスを提供することができ、行き届いたアフターサービスを提供します。弊社は毎日更新の情況を検査していて、もし商品が更新されたら、お客様に最新版をお送りいたします。お客様はその一年でずっと最新版を持っているのを保証します。
 全額返金弊社の商品に自信を持っているから、失敗したら全額で返金することを保証します。弊社の商品でお客様は試験に合格できると信じていますとはいえ、不幸で試験に失敗する場合には、弊社はお客様の支払ったお金を全額で返金するのを承諾します。(全額返金)
 ご購入の前の試用TopExamは無料なサンプルを提供します。弊社の商品に疑問を持っているなら、無料サンプルを体験することができます。このサンプルの利用を通して、お客様は弊社の商品に自信を持って、安心で試験を準備することができます。